?-Deformations as Compact Quantum Metric Spaces
نویسندگان
چکیده
منابع مشابه
Θ-deformations as Compact Quantum Metric Spaces
LetM be a compact spin manifold with a smooth action of the ntorus. Connes and Landi constructed θ-deformations Mθ of M , parameterized by n×n real skew-symmetric matrices θ. TheMθ’s together with the canonical Dirac operator (D,H) on M are an isospectral deformation of M . The Dirac operator D defines a Lipschitz seminorm on C(Mθ), which defines a metric on the state space of C(Mθ). We show th...
متن کاملΘ-deformations as Quantum Compact Metric Spaces
Let M be a compact spin manifold with a smooth action of the ntorus. Connes and Landi constructed θ-deformations Mθ of M , parameterized by n × n skew-symmetric matrices θ. The Mθ’s together with the canonical Dirac operator (D,H) on M are an isospectral deformation of M . The Dirac operator D defines a Lipschitz seminorm on C(Mθ), which defines a metric on the state space of C(Mθ). We show tha...
متن کامل- Algebras as Compact Quantum Metric Spaces
Let l be a length function on a group G, and let Ml denote the operator of pointwise multiplication by l on l(G). Following Connes, Ml can be used as a “Dirac” operator for C ∗ r (G). It defines a Lipschitz seminorm on C∗ r (G), which defines a metric on the state space of C∗ r (G). We show that if G is a hyperbolic group and if l is a word-length function on G, then the topology from this metr...
متن کاملCompact Quantum Metric Spaces
We give a brief survey of many of the high-lights of our present understanding of the young subject of quantum metric spaces, and of quantum Gromov-Hausdorff distance between them. We include examples. My interest in developing the theory of compact quantum metric spaces was stimulated by certain statements in the high-energy physics and string-theory literature, concerning non-commutative spac...
متن کاملGroup C-algebras as Compact Quantum Metric Spaces
Let l be a length function on a group G, and let Ml denote the operator of pointwise multiplication by l on l(G). Following Connes, Ml can be used as a “Dirac” operator for C ∗ r (G). It defines a Lipschitz seminorm on C∗ r (G), which defines a metric on the state space of C∗ r (G). We investigate whether the topology from this metric coincides with the weak-∗ topology (our definition of a “com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2005
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-005-1318-5